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ABSTRACT

With the advancements in deep learning, text-to-speech (TTS) tech-
niques utilizing clean speech have witnessed significant performance
improvements. The data collected from real scenes often contain
noise and generally needs to be denoised by speech enhancement
models. TTS models trained on enhanced speech suffer from speech
distortion and background noise, which thus affect the quality of
synthesized speech. On the other hand, self-supervised pre-trained
models have shown excellent noise robustness in various speech
tasks, indicating that the learned representation is more tolerant to
noise perturbations. Our previous work has demonstrated the supe-
rior noise robustness of WavLM representations for speech synthe-
sis. However, the impact of different self-supervised representations
on speech synthesis performance remains unknown. In this paper,
we systematically compare the performance of four self-supervised
representations, WavLM, Wav2vec2.0, HuBERT, and data2vec, us-
ing a HiFi-GAN-based representation-to-waveform vocoder and a
Fastspeech-based text-to-representation acoustic model. Second,
on the basis of our discovery that the representations have better
noise and speaker information suppression, we further integrate
speaker embedding to realize voice conversion tasks. Finally, exper-
imental results on the LJSpeech and LibriTTS datasets demonstrate
the effectiveness of the method. Audio samples are available at:
https://zzftts.github.io/.

Index Terms— Noise robust text-to-speech, speech synthesis,
self-supervised representation, voice conversion.

1. INTRODUCTION

Text-to-speech (TTS) [1-3] aims to synthesize natural and intelli-
gible speech from text. Thanks to advanced deep learning tech-
niques, neural network-based TTS models have demonstrated the
ability to synthesize high-quality speech when trained with clean
speech data. However, collecting clean speech data requires quiet
environments and high-quality recording equipment, e.g., profes-
sional audio studios, resulting in high data collection costs. Mean-
while, noisy speech data is very easy to collect and is available in
large amounts. If these noisy data can be effectively used for build-
ing TTS models, the cost of data collection will be largely reduced
and the trained TTS model becomes more applicable. How to train
TTS models using noisy data is therefore the focus of this work.
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There are numerous approaches dedicated to training TTS mod-
els using noisy speech, where the majority uses speech enhance-
ment models for denoising and then train TTS models using the en-
hanced speech. For example, pre-trained speech enhancement mod-
els were used in [4-6] for denoising, followed by training TTS mod-
els with the enhanced speech. In [4,5], recurrent neural networks
(RNN5s) were trained using parallel noisy and clean speech and Hid-
den Markov Model (HMM) based acoustic models were then trained
with the enhanced features. Although this scheme performs well in
simple noise situations, the enhanced speech is susceptible to speech
distortion and unseen noise, which can harm the training of the TTS
model. To avoid the use of speech enhancement models, it was sug-
gested in [7-12] to train TTS models directly using noisy data. In [7]
an end-to-end TTS model was proposed by using speaker embedding
and noise representation as conditional inputs to model speaker and
noise information separately. In [8, 9], the noise representation was
taken as input and the background noise was then removed from the
speech via representation decoupling. As in [8,9] the noise embed-
dings are sentence-level vectors with coarse granularity, which might
not be suitable for complex noise scenarios, DenoiSpeech was pro-
posed in [10], which considers fine-grained frame-level noise mod-
eling to handle real-world noisy speech. DRSpeech was proposed
in [11], which jointly represents time-variant additive noises with a
frame-level encoder and an utterance-level encoder. Although these
methods demonstrate a good noise-robust performance, most exploit
mel-spectrogram features.

Self-supervised pre-trained models have shown excellent per-
formance and strong noise robustness on many speech tasks. In
the field of automatic speech recognition (ASR), the self-supervised
pre-trained models Wav2vec2.0 [13], HuBERT [14], Data2vec [15]
and WavLM [16] were proposed recently, and in [17] using the pre-
trained models to learn different levels of information at different
layers was analyzed. ASR models such as the problem-agnostic
speech encoder (PASE+) [18], Wav2vec-switch [19] and enhanced
wav2vec2.0 [20] exhibit an excellent noise robustness in noisy envi-
ronments. Based on these methods, in [21,22] the combination with
speech enhancement models was revealed to further improve the
ASR accuracy in noisy scenes. The enhanced speech is fed into the
pre-trained model to reduce the impact of speech distortion, which
somehow supports the fact that the pre-trained representation has a
strong ability to resist speech perturbation. Our previous preliminary
work [23] has shown that the self-supervised WavLM model for TTS
has better noise robustness. However, it is unknown whether it is ap-
propriate for other representations to be used for TTS.

In this paper, we therefore systematically compare the perfor-
mance of four self-supervised models, WavLM, Wav2vec2.0, Hu-
BERT and data2vec, for noise robust TTS. By extracting representa-
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Fig. 1: The proposed TTS paradigm: (a) representation-to-waveform vocoder, (b) text-to-representation Fastspeech2, and (c) inference.

tions from different layers, we train the representation-to-waveform
vocoder and the text-to-representation Fastspeech acoustic model,
respectively. We measured objective evaluation metrics and speaker
similarity metrics on the synthesized speech and found that 1) the
higher the level of representation across models the stronger the sup-
pression of noise and speaker information. 2) The weighted differ-
ent layers of representations can balance both the noise robustness
of the model and the speaker information. 3) The representation
at the highest layer of the Data2vec model has the best noise and
speaker suppression. Second, we found that high-level representa-
tions have the ability to decouple content information from speaker
information, which naturally facilitates the voice conversion task.
The vocoder is trained by concatenating speaker embeddings with
the representation of the highest layer of Data2vec, which enables
transitions across speakers while keeping the content of the speech
unchanged. This initially validates that the representation at the
highest layer has the potential to be used for voice conversion.

2. METHODOLOGY

In this section, we introduce the components of our noise-robust
TTS model, including the representation-to-waveform vocoder and
the text-to-representation Fastspeech2 model.

2.1. Representation-to-waveform: Vocoder

The representation-waveform vocoder follows the HiFi-GAN [24],
which consists mainly of a generator and two discriminators, i.e.,
multi-scale and multi-period discriminators, and both the generator
and the discriminator utilize multi-layer convolutional networks.The
generator and the two discriminators are trained by an adversarial
learning approach. The generator takes the representations of differ-
ent layers of the pre-trained model as input and then upsamples them
by multi-layer transpose convolutions until the length of the output
sequence matches the temporal resolution of the original waveform.
Each transposed convolution is followed by a multi-receptive field

fusion module to achieve the purpose of modeling the features of
the initial input under multiple receptive fields. The discriminator
is employed to identify the signal patterns of different periodici-
ties in the speech signal, which includes the Multi-Period Discrim-
inator (MPD) and the Multi-Scale Discriminator (MSD).The MPD
discriminator models the diverse periodic patterns inside the speech
data.The MSD discriminator models the long-range information of
the speech. For the detailed network structure of generators and
discriminators, please refer to [24]. The procedure for training the
vocoder is shown in Fig. 1(a). To ensure that the data for training
the vocoder is universal, we select publicly available multi-speaker
clean speech datasets from other domains. The clean speech x is
fed into the pre-trained model to extract the output representation c
from different layers, and then the representation c is fed into the
vocoder to reconstruct the clean speech waveform. Given the gen-
erator GG and discriminator D, the total generator loss function L¢
and the discriminator loss function £p for training the vocoder can
be respectively formulated as

LG = Acadv(G§ D) + a[:fm(G§ D) + B‘Cmel(G)y (1)

[/D = Lad'u (Dy G)7 (2)
where the generative loss Lq4,(G; D) and discriminative loss

Ladv(D; G) are respectively given by

Laao(D; G) = E(,o) [(D(z) = 1)* + (D(G(e)*], ()

Laas(G; D) = E,) [(D(G(c)) — 1)?]. )

The feature matching loss £ ¢, (G; D) and the mel-spectrogram loss
Lret(G) in (1) keep the same as [24]. « and 3 are hyperparameters.

2.2. Text-to-representation: Fastspeech2

We utilize Fastspeech2 [25] to learn the mapping from text to repre-
sentations. The Fastspeech2 model mainly consists of phone embed-
ding, encoder, variance adaptor and decoder modules. The encoder
consists of a multi-layer feed-forward transformer, which converts a
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Fig. 2: The structure of the voice conversion model.

sequence of phonemes into a sequence of hidden states. The variance
adaptor exploits a multi-layer convolutional network to predict du-
ration, pitch, energy, etc., which introduces more information about
variations in speech to tackle the one-to-many mapping problem in
speech synthesis. The decoder consists of a linear projection layer,
which is used to map the network output to the representation.During
training, the representation is reconstructed by fusing the output of
the variance adaptor with the output of the encoder used as input
to the decoder. For more details about Fastspeech2, please refer
to [25,26]. The procedure of training text to representation is shown
in Fig. 1(b). Firstly, we incorporate the original noisy speech into
the speech enhancement model to obtain the enhanced speech, and
then feed it into the pre-trained model to extract the corresponding
representation. We train the Fastspeech2 model using paired text and
enhanced representations. It is worth an additional observation that
both the speech enhancement model and the pre-training model are
publicly available models and their parameters do not get updated.
After training, we inject the text and connect the Fastspeech2 model
and the vocoder model to synthesize the speech waveform in the in-
ference phase, as shown in Fig. 1(c).

2.3. The voice conversion model

In our experiments, we found that the representations of the higher
layers of the pre-trained model have less speaker information. In
order to verify that the representation at the higher layers can be
used for the voice conversion task, we fuse the representation and
speaker information, and the model structure is shown in Fig. 2. In
the training phase, speech is fed into a pre-trained data2vec model
to extract the representations of the twelfth layer, and then speech is
similarly fed into a pre-trained speaker verification model to extract
the speaker embeddings. The representations and speaker embed-
dings are added together and fed into the HiFi-GAN-based vocoder.
The overall model is trained in the same way as in section 2.1. In
the inference stage, we can input the speech of other speakers to ex-
tract the speaker embedding, and then realize the function of voice
conversion. The speaker verification model uses the publicly acces-
sible model Resemblyzer', and the entire experiment is done on the
LibriTTS dataset.

3. EXPERIMENTAL SETUP

3.1. Model configurations

For the vocoder, we choose the publicly available multi-speaker
clean speech dataset LibriTTS? [27] train-clean-100 subset in order
to ensure that the data for training the vocoder is universal and does

Uhttps://github.com/resemble-ai/Resemblyzer
Zhttps://www.openslr.org/60/

not overlap with the dataset for training FastSpeech2. In this paper,
we use WavLM, Wav2vec2, HuBERT, and Data2vec representations
for comparison experiments. For each type of representation, we
trained seven models, extracting the representations of the 1st, 3rd,
5th, 7th, 9th, and 12th layers and averaging the representations of
all layers as input. All audio sample rates are converted to 24kHz.
We use mel-spectrogram features of clean speech to train a vocoder
as the baseline. For the baseline model, The fast Fourier transform
(FFT) size of the extracted mel-spectrogram is set to 1024, the
hop size to 240, and the window size to 960. The number of fre-
quency bins of the mel-spectrogram are set to 80, respectively. For
our model, since the frame shift of the representation extracted by
WavLM is 20 ms, and the frame shift of mel-spectrogram is 10ms,
we set the FFT size to 1024, the hop size to 480, and the window
size to 960. The dimension of representation is 768, respectively.
The batch size is set to 16, and a total of 800k steps are trained. The
hyper-parameters o and 3 in (1) are set to 2 and 45, respectively.

For training FastSpeech2, we utilize the LISpeech dataset’. To
simulate the noisy environment, we mix the LISpeech speech data
with noise at a signal-to-noise ratio (SNR) of 5 dB as a noisy dataset,
where the noise data comes from the Freesound dataset [28]. To en-
sure that the speech enhancement model has not seen the LISpeech
dataset, the speech enhancement model* is publicly available and
was trained on other datasets. The enhanced speech is fed to the
pre-trained model to extract the representations of different layers.
All audio sample rates are converted to 24kHz. We train two models
using the mel-spectrogram of clean speech and the mel-spectrogram
of enhanced speech as the baseline, respectively. For the baseline
model, the FFT size of the extracted mel-spectrogram is set to 1024,
the hop size to 240, and the window size to 960. The frequency bins
of the mel spectrum are set to 80. For our model, we set the FFT
size to 1024, the hop size to 480, and the window size to 960. The
dimension of representation is 768. The batch size is set to 16, and a
total of 900k steps are trained, respectively.

For the voice conversion model, we train the vocoder using
data2vec representations and speaker embeddings. The dimension
of the representation is 768 and the dimension of the speaker em-
bedding is 256. The dimensions of speaker embedding are mapped
to the representational dimensions by linear projection. The repre-
sentations and speaker embeddings are then summed and fed to the
vocoder. The entire voice conversion model is trained in the same
way as the vocoder.

3.2. Evaluation metrics

For different models, we respectively generated 256 utterances from
the test set. For objective evaluation metrics, we tested the Mean
Opinion Score - Listening Quality Objective (MOS-LQO) using
the VISQOL’ [29] tool, and in audio mode, the MOS-LQO values
ranged from 1 to 4.75, with higher values indicating better sound
quality. To measure the speaker similarity of the synthesized speech,
we compute the cosine distance of the speaker embedding as the
speaker similarity metric. Specifically, speaker similarity metrics
are computed using the public speaker verification model ECAPA-
TDNNS. For the subjective evaluation, we use the mean opinion
score (MOS) to evaluate the naturalness and speaker similarity of
the speech, which ranges from 1 to 5 (the higher, the better).

3https://keithito.com/LJ-Speech-Dataset/

“https://huggingface.co/speechbrain/sepformer-wham16k-enhancement

Shttps://github.com/google/visqol

Shttps://modelscope.cn/models/damo/speech_ecapa-
tdnn_sv_en_voxceleb_16k/summary



Table 1: The MOS-LQO metrics of synthesized audio using different layers of representations.

Feature Type MOS-LQO
WavLM | Wav2vec2 | HuBERT | Data2vec
- Ground Truth -
Clean 3.78
Mel-spectrogram Enhanced 2.58
Enhanced (Layer 1) 3.03 3.04 2.92 3.03
Enhanced (Layer 3) 3.13 3.04 3.07 3.02
Enhanced (Layer 5) 3.21 3.07 3.08 3.06
Representation Enhanced (Layer 7) 3.01 3.06 3.00 3.07
Enhanced (Layer 9) 3.10 3.05 3.03 3.00
Enhanced (Layer 12) 3.05 2.91 2.87 2.94
Enhanced (Average of all layers) 3.32 3.17 3.06 297

Table 2: The speaker similarity metrics of synthesized audio using different layers of representations.

Speaker similarity

Feature Type WavLM | Wav2vec2 [ HuBERT [ Data2vec
- Ground Truth -
Mel-spectrogram Clean 0.8037
Enhanced 0.6176
Enhanced (Layer 1) 0.7044 0.6939 0.6942 0.7050
Enhanced (Layer 3) 0.6661 0.6385 0.6871 0.5160
Enhanced (Layer 5) 0.6447 0.5829 0.6395 0.2794
Representation Enhanced (Layer 7) 0.4522 0.5685 0.5453 0.2953
Enhanced (Layer 9) 0.4103 0.5508 0.5063 0.2563

Enhanced (Layer 12)

0.3747 0.2599 0.3699 0.0565

Enhanced (Average of all layers)

0.6057 0.6759 0.6448 0.4092

4. EXPERIMENTAL RESULT

4.1. The comparison of synthesized speech with different repre-
sentations

The subjective performance of the synthesized speech in terms of
MOS-LQO is shown in Table 1. The baseline model trained with
clean speech achieves a MOS-LQO of 3.78 and the baseline model
trained with enhanced speech obtains a MOS-LQO of 2.58. This
is due to the fact that the TTS models trained using the enhanced
speech often contain noise (i.e., speech distortions), leading to low
MOS-LQO values. Overall, the quality of synthesized speech using
representations is generally better than the quality of that synthe-
sized by the baseline model, and the noise component in the synthe-
sized speech is significantly reduced. The quality of the synthesized
speech using the WavLM representation was better than the other
three representations, and the quality of the synthesized speech using
the Data2vec representation was the worst. The quality of synthe-
sized speech is similar using intermediate layers of representations,
e.g., the 3rd, and 5th layers. In addition, models trained using repre-
sentations averaged over all layers can synthesize better speech. For
example, the model trained with the WavLM representation averaged
over all layers achieved the best performance with a MOS-LQO of
3.32.

4.2. The speaker similarity of synthesized speech with different
representations

In order to measure the speaker similarity of speech synthesized
with different representations, we use the publicly available ECAPA-
TDNN model to measure speaker similarity, and the experimental re-

sults are shown in Table 2. It is worth mentioning that the metrics in
this paper are different from those in [23]. The results in [23] use an
internal speaker verification model, which is not publicly available,
so for convenience, the publicly available model ECAPA-TDNN is
therefore used. Using the Mel-spectrum features of clean speech to
train the model, the speaker similarity of the synthesized speech on
the test set was able to reach 0.8037. When the Mel-spectrum fea-
tures of enhanced speech are used to train the model, the speaker
similarity of the synthesized speech reaches 0.6176. When the rep-
resentation is used to train the model, the higher the layer of rep-
resentation used the lower the speaker similarity of the synthesized
speech. All four representations performed consistently. In addi-
tion, we were surprised to find that the representation at layer 12 of
Data2vec has the least amount of speaker information. This indicates
that the representation has a good decoupling effect.

4.3. The similarity of synthesized speech from voice conversion
models.

To measure the naturalness and speaker similarity of the speech gen-
erated by the voice conversion model, we tested the MOS scores of
the generated speech, and the experimental results are shown in Ta-
ble 3. We found that voice conversion can be achieved well using
data2vec representations, which suggests that data2vec representa-
tions have good potential for voice conversion tasks. However, the
speaker similarity of the synthesized speech needs to be further im-
proved, which we guess is due to the small dataset and insufficient
training, and we will continue to validate it on a larger dataset sub-
sequently.



Table 3: The MOS scores of the speech generated by the voice con-
version model.

Model MOS
Ground Truth 4.0
Voice conversion 3.2

5. CONCLUSION

In this paper, we systematically investigate representation-based

noise robust TTS models.

By constructing representation-to-

waveform vocoders, and text-to-representation acoustic models,
we find that representation-based TTS models have better noise
robustness than mel-spectrogram-based TTS models. Averaging the
representations across all layers provides a good balance of noise ro-
bustness and speaker information, and multiple self-supervised rep-
resentations perform consistently. Furthermore, we found that the
data2vec representation has the best noise suppression and speaker
information suppression, and it has the potential to be applied to
voice conversion tasks.
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