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Abstract—With recent advances of AIGC, video generation
have gained a surge of research interest in both academia and
industry (e.g., Sora). However, it remains a challenge to produce
temporally aligned audio to synchronize the generated video,
considering the complicated semantic information included in the
latter. In this work, inspired by the recent success of text-to-audio
(TTA) generation, we first investigate the video-to-audio (VTA)
generation framework based on latent diffusion model (LDM).
Similar to latest pioneering exploration in VTA, our preliminary
results also show great potentials of LDM in VTA task, but it
still suffers from sub-optimal temporal alignment. To this end, we
propose to enhance the temporal alignment of VTA with frame-
level semantic information. With the recently popular grounding
segment anything model (Grounding SAM), we can extract the
fine-grained semantics in video frames to enable VTA to produce
better-aligned audio signal. Extensive experiments demonstrate
the effectiveness of our system on both objective and subjective
evaluation metrics, which shows both better audio quality and
fine-grained temporal alignment.1

Index Terms—Video-to-audio generation, latent diffusion
model, fine-grained temporal alignment, segment anything model

I. INTRODUCTION

Vision and hearing constitute the main senses of we humans
for perceiving the world surrounding us, which are usually
complementary to each other and both indispensable [1]–[6].
Recent advances of AIGC enables neural model to produce
vivid video from textual descriptions (e.g., Sora [7]), present-
ing a great potential of AI in benefiting human life. However,
they lack the capability to generate synchronized audio signal
to make the video close to realistic scenarios. Therefore an
effective video-to-audio (VTA) method is expected to have
outstanding performance on both audio quality and temporal
alignment, in which the generated audio should not only match
the contents and semantics of the input video but also align
temporally with the given video frames.

Inspired by the success of latent diffusion model (LDM) in
text-to-video (TTV) generation [8]–[13], recent works achieve
a promising progress in text-to-audio (TTA) generation [10],
[14]–[24]. Despite the good performance, TTA can hardly
synchronize the generated audio to target video, due to the lack
of temporal semantics in the textual input. Therefore, latest ef-
forts pioneer the study in direct VTA generation [25]–[27] with

1Demo page is available at: https://sounddemos.github.io/vta-sam/

latent diffusion model. To illustrate, [27] investigate various
contrastive pre-trained audio/video/text embeddings and data
augmentation methods on top of LDM to improve semantic
alignment, and [26] propose a sophisticated temporal adapter
to model the audio-video alignment. Despite the effectiveness,
these pioneering studies fail to explicitly model the frame-
level video-audio synchronization, which is hard considering
the complicated input video representations.

In this work, we propose a fine-grained video-to-audio
generation approach with explicit frame-level synchronization.
Specifically, we first investigate the popular latent diffusion
model for VTA task, similar to the typical TTA works and
latest VTA studies. To enhance the video-audio synchroniza-
tion, we propose to leverage the grounding segment anything
model (SAM) [28], [29] to extract detailed object information
from each video frame, thus providing fine-grained seman-
tic information to condition the LDM for audio generation.
Extensive experiments demonstrate the effectiveness of our
approach in enhancing the temporal semantics, in terms of
both objective and subjective evaluation metrics. Analysis
shows the superiority of Grounding SAM in providing fine-
grained temporal information in guiding LDM generation.

II. METHODOLOGY

A. Overall Framework

Drawing inspirations from the popular TTA works [14],
we develop a LDM-based VTA framework as shown in
Fig. 1. It consists of several key components: a video encoder,
a Grounding SAM, a Transformer UNet based conditional
diffusion model, and an audio mel-spectrum variational auto-
encoder (VAE). Given the input video, we leverage pre-trained
CLIP visual encoder [30] to extract visual embeddings. On
the other hand, we introduce Grounding SAM to extract the
objects (e.g., “car”) in each video frame, as well as their ap-
pearing probability predicted by SAM. These information are
also transferred into CLIP embedding. The resulted visual and
object embeddings are combined together as the conditioner
of LDM for audio generation. The output representations are
sent into VAE decoder to generate mel-spectrum and finally
goes into vocoder to produce waveform.
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Fig. 1: The diagrams of (a) overall framework of our VTA approach, (b) Grounding SAM model [28] from literature. For each
video frame, we use Grounding SAM to extract all the objects and their probabilities to represent fine-grained semantics.

B. Visual Encoder

In our VTA framework, visual encoder Ev is used to encode
both the semantic and temporal information in video input
for comprehensive audio generation. We leverage the popular
CLIP vision encoder in our framework, which is expected
to capture the comprehensive visual information including
scenes, characters, and events. Necessary linear projectors are
added after it to match the dimension of LDM embeddings.

C. Grounding Segment Anything Model (SAM)

The Grounding SAM2 [28] S is a open-set object detector
that can detect arbitrary objects with human inputs such as
category names or referring expressions. In our VTA frame-
work, for better use of the grounding ability of SAM, we
send the paired textual description t to ground and detect
the appearing objects from i-th video frame vi, e.g., “car”
and “man”. Specifically, we first employ nltk toolkit3 to
extract the nouns (i.e., object) o1i , o

2
i , ... from input text, thus

provides fine-grained prompts for SAM grounding. Thereafter,
SAM consists of two modality encoders to extract image and
object embeddings respectively, followed by a cross-modal
decoder to retrieve the video frame and predict the appearing
probability of each object. In this way, SAM helps produce
comprehensive semantic information of current video frame.

The j-th detected object oji is then sent into a CLIP text
encoder Et to produce the semantic embedding, which are

2https://github.com/IDEA-Research/GroundingDINO
3https://www.nltk.org/index.html

finally weighted summed using the appearing probability pji :

(o1i , o
2
i , ...), (p

1
i , p

2
i , ...) = S(vi, t),

si =
∑
j

pji ∗ Et(o
j
i ),

(1)

si is the semantic embedding of i-th video frame, and we
send co = {si}Ti=1 as the final sequential object embedding to
enhance diffusion VTA. It is worth noting that we use the text
instead of detected image region to represent the object, which
aims to make more comprehensive conditioners for LDM,
since the image region is already covered by previous video
embeddings. On the other hand, our incorporation of frame-
level object information resolves the limitation of previous
TTA methods that relies on utterance-level text.

D. Latent Diffusion Model (LDM)

Diffusion model is currently among the most popular gen-
erative approaches, which consists of diffusion process and
reverse process. Given the original input x0, it first follows
a Morkov chain of diffusion steps to add noise to x0 until it
finally reaches a pure Guassian distribution, i.e., xt ∈ N(0, 1).
Thereafter, during the reverse process, the model learns to
denoise the xt step by step until it recovers the original
input x0. To save the computation cost, latent diffusion model
propose to conduct these two process on latent space Z instead
of original input space X .

In our VTA setting, we have two diffusion conditioners,
i.e., cv = Ev(v) from video input v, where Ev is CLIP video
encoder for feature extraction, and the co = {si}Ti=1 from



Eq. (1). For step-by-step denoising, we train a neural model
ϵθ to predict the noise with following training objective:

θ = argminEt∼U(1,T )∥ϵ− ϵθ(Zt, t, cv, co)∥22, (2)

where we use SAM to extract frame-level semantic informa-
tion in textual format, and then extract the hidden embedding
using CLIP text encoder Et, which shares the same semantic
space with CLIP video encoder Ev . Here our consideration
in utilizing textual output from SAM instead of the image
output is that, the visual information is already covered by
video embedding. Therefore, we select the textual output to
make comprehensive condition information.

In addition, during reverse process, we adopt the popular
classifier-free guidance, which has been proved effective in
text-to-audio generation [14]. Given the latent variable zt
and the two conditioners, we perform the generation both
conditionally and unconditionally, and then sum them up with
a specified weight α.

ϵ′θ = α ∗ ϵθ(Zt, t, cv, co) + (1− α) ∗ ϵθ(Zt, t), (3)

E. LDM Conditioned on Video and Objects

We investigate how to integrate the two conditioners cv
and co into diffusion model ϵθ. Our LDM follows the UNet
structure where each module is a Transformer block (i.e., self-
attention, cross-attention, feed-forward network). Denote the
latent variable after self-attention module as zt, now we need
to incorporate cv and co during cross-attention computation.
Considering that co contains more fine-grained temporal in-
formation than cv with the help of SAM, we send the video
representations into cross-attention for retrieval and then add
the sequential object information to enhance the semantics:

z′t = Attention(zt, cv, cv) + co, (4)

We also investigate some other schemes for conditional LDM
as discussed in Section. III-B4.

F. Mel-spectrum VAE and Vocoder

As introduced before, our diffusion model is performed
in latent space, where the variable z0 is extracted by VAE
encoder from mel-spectrum input. Specifically, we use the pre-
trained VAE weights from AudioLDM [16]. After generating
the target mel-spectrum, we finally send it into Hifi-GAN
Vocoder [31] to obtain the waveform output.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

Dataset. We evaluate the proposed method on public VG-
GSound dataset [32]. In particular, this dataset contains 550
hours of videos with paired audio-visual events.
Configurations. Our LDM follows the popular Transformer
UNet [33], [34] structure, which is configured with a cross-
attention dimension of 1024 and 8 input and output channels.
We train our models with learning rate of 3e-5 and no warmup
steps, and the batch size is set to 8 per GPU. All models are
trained for a total of 40 epochs on 4 NVIDIA-A100-40GB

TABLE I: Performance comparison with baselines from both
TTA and VTA literature, in terms of objective metrics.

System FD ↓ FAD ↓ KL ↓ AV-Align ↑

Text-to-Audio
Tango [24] 41.7 4.7 5.5 0.173

Video-to-Audio
Diff-Foley [25] 30.6 4.5 5.2 0.193
VTA-LDM [27] 30.3 4.5 5.0 0.204
FoleyCrafter [26] 28.3 3.8 4.8 0.233
VTA-SAM (ours) 25.1 3.1 4.5 0.255

TABLE II: Subjective evaluation results of proposed method
and baselines. Larger value means better performance.

System Audio Semantic Temporal Overall
Quality Alignment Alignment Quality

Ground-Truth 81.7 83.8 80.5 79.9
Text-to-Audio

Tango [24] 72.0 56.2 52.1 57.8
Video-to-Audio

Diff-Foley [25] 73.0 68.6 57.9 62.7
VTA-LDM [27] 72.5 70.4 60.3 65.2
FoleyCrafter [26] 74.7 70.9 61.4 65.9
VTA-SAM (ours) 75.7 72.4 63.5 66.7

GPUs. During inference stage, we select 1,000 samples from
official test set for efficient evaluation. Specifically, we set the
denoising steps to 300, the number of samples per audio to 1,
and the guidance scale to 3 for classifier-free guidance.
Metric. For objective evaluation, we use several quantita-
tive metrics, including Frechet distance (FD), Frechet audio
distance (FAD), and Kullback–Leibler (KL) to measure the
semantic similarity of generated audio with the ground-truth.
Furthermore, we use the AV-Align metric [35] to evaluate the
temporal alignment of generated audio with input video. For
subjective evaluation, we invite human listeners to evaluate
from four different perspectives of perception, i.e., audio qual-
ity, semantic alignment, temporal alignment, and the overall
quality. Specifically, we select 30 samples and invite five
listeners to evaluate them using a 0-100 score scale [27].

B. Results and Analysis

1) Objective Evaluation: Table I illustrates the comparison
of our proposed VTA-SAM with previous works. We use
objective metrics for evaluation, including FD, FAD, and
KL to measure the semantic similarity of generative audio
and ground-truth audio, as well as AV-Align to measure the
temporal alignment of generated audio and input video. We
first reproduce Tango, the SOTA text-to-audio approach, to
evaluate the TTA performance under our setting. Compared
to that, the first diffusion-based video-to-audio approach Diff-
Foley shows significantly better performance in terms of both
semantic and temporal alignment, thanks to the much richer
information brought by video than text. Thereafter, the work
VTA-LDM investigate the impact of vision encoders, auxiliary
embeddings, and data augmentation techniques on LDM-based



TABLE III: Ablation study of input modalities. ‘V’ denotes
video, ‘T’ denotes text, ‘O’ denotes the detected objects from
Grounding SAM, and ‘+’ denotes combination.

Input Modality FD ↓ FAD ↓ KL ↓ AV-Align ↑

T-Only 41.7 4.7 5.5 0.173
V-Only 30.3 4.5 5.0 0.204
V + T 28.8 3.8 4.9 0.220
V + O 25.1 3.1 4.5 0.255
V + O + T 25.5 3.0 4.6 0.251

TABLE IV: Ablation study of conditional LDM. We investi-
gate the optimal method to insert video and object information
into LDM as conditioners. ‘Z’ denotes the latent variable
inside LDM, ‘V’ denotes video, ‘O’ denotes the detected
objects from Grounding SAM, ‘@’ denotes cross-attention
operation, ‘+’ denotes concatenation operation.

Method FD ↓ FAD ↓ KL ↓ AV-Align ↑

Z @ V 30.3 4.5 5.0 0.204
Z @ (V + O) 26.8 3.5 4.7 0.242
Z @ O + V 28.3 3.9 4.6 0.233
Z @ V + O 25.1 3.1 4.5 0.255

VTA approach, which moves one step forward on perfor-
mance. The most recent work FoleyCrafter designs specific
semantic and temporal adapters to explicitly improve the
objective performance. In this work, our proposed approach
leverages the abundant pre-trained knowledge of grounding
SAM to extract fine-grained temporal semantics to improve
VTA. As a result, it presents better performance in terms of
all objective metrics, which demonstrates its effectiveness and
provides a new insight for VTA task.

2) Subjective Evaluation: Apart from objective metrics, we
also conduct subjective evaluation to verify the effectiveness
of our approach. We evaluate from four different perspectives,
i.e., 1) audio quality: merely the quality of generated audio,
2) semantic alignment, the consistency of overall semantic
information covered by input video and generated audio, 3)
temporal alignment, the consistency of frame-level semantic
information covered by input video and generated audio, 4)
overall quality, the overall quality of generated audio-video
pair. We first observe from Table II that the ground-truth audio-
video pairs enjoy excellent quality (i.e., around 80) from all
perspectives, which sets a high upper-bound for VTA task.
In comparison, the TTA baseline performs much worse on
these subjective evaluation, except the audio quality metric.
In addition, we also observe that temporal alignment is the
most difficult metric (i.e., lowest value in all methods), which
exactly matches our major research motivation. Previous VTA
works post some improvements on these four subjective met-
rics with sophisticated techniques with diffusion model, while
the temporal alignment is still sub-optimal (i.e., around 60). On
top of VTA-LDM, our introduction of grounding SAM brings
fine-grained semantic information and successfully improves

the quality of temporal alignment (i.e., 60.3→63.5). However,
we are also aware that its absolute performance is still limited
when compared to the ground-truth. We expect that the next
generation of VTA models may depend on large model and
abundant data to achieve groundbreaking progress, referring
to the recent success of large language models and Sora.

3) Effect of Input Modalities: Table III presents the ablation
study of different combination of input modalities. From the
first two rows, we observe that VTA outperforms TTA by
a large margin, thanks to the richer semantic information
brought by videos. Then, we try to combine both modalities
and it yields some improvement as indicated by the third
row in Table III. However, the improvement of ‘V + T’ over
‘V-Only’ is limited since the text description contains little
temporal information. In comparison, our approach introduces
grounding SAM to extract the object information in each video
frame and weight them using predicted appearing probability
and CLIP text encoder. As a result, we can obtain fine-grained
temporal semantics to align the generated audio to input video,
which produces significantly better performance in terms of
all objective metrics. In addition, we observe that combine
incorporating both fine-grained object information and coarse-
grained text information fails to bring further improvement, we
speculate that the former is already sufficient to enhance audio
generation, where the latter seems to be redundant.

4) Effect of Different Conditioning Methods: Given the op-
timal combination of ‘V + O’ for conditioner, Table IV further
investigates different methods to incorporate them into LDM.
Inspired by previous work [27], we leverage cross-attention
operation, with the latent variable Z as query and the video
conditioner ‘V’ as key/value, to fuse V into LDM. On top of
that, we try to incorporate our introduced object conditioner
‘O’ into LDM via three methods, i.e., 1) concatenate V and O
as the key/value, 2) leverage O as key/value and add V after
cross-attention, 3) leverage V as key/value and add O after
cross-attention. Results indicate that the last scheme shows
the best performance. We speculate that the extracted object
information is already fine-grained enough, which makes the
cross-attention retrieval unnecessary and thus may explain why
simple addition at last yields the best performance.

IV. CONCLUSION

In this work, we propose a sophisticated video-to-audio
generation approach using latent diffusion model with explicit
synchronization. Specifically, we first investigate the popular
latent diffusion model for VTA task, similar to the typical TTA
works and latest VTA studies. To enhance the video-audio syn-
chronization, we propose to leverage the grounding segment
anything model to extract detailed object information from
video frames, which provides fine-grained semantic informa-
tion to condition the LDM for audio generation. Experiments
demonstrate the effectiveness of our approach in enhancing the
temporal semantics compared to baselines, in terms of both
objective and subjective evaluation metrics. Further analysis
indicates the superiority of grounding SAM in providing fine-
grained temporal information in guiding LDM generation.
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